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Introduction

• Machine learning for real-world challenges.

• Robotics + simulations = refined algorithms & risk minimization.

• Tasks: Obstacle avoidance and navigation.

• Agent: FOSSBot

• RL Algorithms: 

➢ Proximal Policy Optimization (PPO)

➢ Deep Q Network (DQN)

DIKW pyramid (source)

https://en.wikipedia.org/wiki/DIKW_pyramid


Related Work (1)
Educational Robotics

• Great potential for tertiary education.

• RL’s adaptability + educational robots = innovative teaching methods.

• Robots’ domain & roles classification – Mubin et al. 2013 [1]

• Technical creativity, Applied knowledge, Interest boost – Ospennikova et al. 2015 [2]

• Open-source education robot – FOSSBot – Chronis and Varlamis 2022 [3]



Related Work (2)
RL, Path Planning and Obstacle Avoidance

• Traditional Path Planning methods: BFS, DFS, Dijkstra’s algorithm.

➢ Need for a model of the world-map (Obstacles’ positions)

• RL methods: Through trial-and-error, maximizing cumulative rewards.

➢ Dynamic-Complex environments, no model needed, only experience – Sutton and Burto 2018 [4]

• DRL for obstacle avoidance [Kinect RGBD cam] – Tai and Liu 2016 [5]

• Path planner training [Demonstration learning] – Pfeiffer et al. 2017 [6]

• UAV navigation using A2C algorithm – Chronis et al. 2023 [7]



Technologies used

• Environments: 

➢ OpenAI Gym

➢ CoppeliaSim

• Algorithms:    

➢ stable-baselines3 

• Data Logging: 

➢ Weights and Biases

• Data Visualization: 

➢ Python’s matplotlib

https://www.gymlibrary.dev/index.html
https://www.coppeliarobotics.com/
https://stable-baselines3.readthedocs.io/en/master/
https://wandb.ai/home
https://matplotlib.org/


FOSSBot

Software stack (source)

Ultrasonic Distance 

Sensor (source)

Infrared Obstacle 

Sensor (source)

• Open-source education robot

• 3D printed

• Flexible software stack

• Block-based (Blockly) or Text-based (Coding) programming

• Ultrasonic Distance Sensor (0.02 - 4m)

➢ Distance, not bearing

• 3 x Infrared Obstacle Sensors (2-30cm)

➢ 1: obstacle - 0: clear

• Inertial Measurement Unit (IMU)

➢ Robot’s orientation & position

https://www.mdpi.com/2079-9292/11/16/2606
https://en.wikiversity.org/wiki/File:Ultrasonic_Sensor.jpeg
https://medium.com/@kekreaditya/ir-infrared-obstacle-avoidance-sensor-with-arduino-714837ad9ef5


RL Algorithms 
Preliminaries

Input: Observation space

Q-Value Estimation

Action Selection (ε-greedy)

Interaction & Reward

Experience Storage (replay buffer)

Weight Updates

Until Convergence

Policy Initialization

Input: Observation space

Advantage Calculation

Objective Clipping

Gradient Computation

Policy Update

Epoch Iteration

Until Convergence

DQN – Roderick et al. 2017 [8] PPO – Schulman et al. 2017 [9]



Experimental Setup (1)
Grid Environment

• Custom environment (OpenAI Gym).

• Action space: 3 discrete actions [Move forward, 45-degree left turn, 45-degree right turn]

• Observation space: i) Agent’s angle diff from the target Δ𝜃 (in degrees), ii) Euclidean distance 

𝑑𝑒𝑢𝑐𝑙, iii) Total steps (max: 200), iv) 3 IR sensors (implemented) values as a List (size: 3 / 0 or 1) 

• Reward Function: 

• Map: List of lists – 0: open path, 1: obstacles

• Default rewards: obstacle collision: −10,

   max steps: −10, target reached: +1000

• Visualization: PyGame

 

𝒓𝒆𝒘𝒂𝒓𝒅 =  −𝒅𝒆𝒖𝒄𝒍

Grid Environment – Gym/PyGame 

https://www.gymlibrary.dev/index.html
https://www.pygame.org/docs/


Experimental Setup (2)
Simulation Environment (1)

• Custom environment (CoppeliaSim).

• Action space: 3 discrete actions [Move forward, Forward-left, Forward-right]

• Observation space: i) Agent’s angle diff from the target Δ𝜃, ii) Euclidean distance 𝑑𝑒𝑢𝑐𝑙, 

iii) Obstacle distance 𝑑𝑜𝑏𝑠 (by ultrasonic sensor), iv) 3 IR sensor binary values 𝑠𝑙 , 𝑠𝑐 , 𝑠𝑟

• Reward Function: 

• Default rewards: obstacle collision (−100),

   target reached (+1000)

𝒓𝒆𝒘𝒂𝒓𝒅 =  𝒘𝒐𝒃𝒔 ∙ 𝟎. 𝟓 ∙ 𝟏 −
𝒍𝒂𝒓𝒄

𝟏𝟖𝟎 ∙ 𝒅𝒕𝒂𝒓𝒈𝒆𝒕
+ 𝟎. 𝟓 ∙ 𝟏 −

𝒅𝒕𝒂𝒓𝒈𝒆𝒕

𝒅𝒎𝒂𝒙

Simulation Environment - CoppeliaSim 

https://www.coppeliarobotics.com/


Experimental Setup (2)
Simulation Environment (2)

• Current FOSSBot structure – Difficulties

• Ultrasonic sensor gives distance, but not bearing.

• IR obstacle sensors come to rescue(!)

• If they detect something, we get some info about the target’s bearing.

Suggested IR sensors position modification



Results
Grid

Training Evaluation

Evaluation Cycle: 10 evaluation episodes Final Evaluation: 1,000 evaluation episodes



Trajectories
Grid

PPO-

DQN-



Solutions
Grid

15x15 - DQN

30x30 - PPO



Results
Simulation

Training
Evaluation

Evaluation Cycle: 10 evaluation episodes

Final Evaluation: 100 evaluation episodes

-PPO

DQN-



Trajectories
Simulation

PPO-



Solutions
Simulation



Conclusions

• PPO & DQN excel in simple grid environments.

• PPO outperforms DQN in complex simulations, and learns rapidly and effectively.

• FOSSBot is now autonomous in path planning.

• Future work:

➢ Develop path-planning library.

➢ Apply successful strategies to real FOSSBot.

➢ Optimize RL algorithms.
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Thank you!
Finally! I know 

how to avoid 

obstacles!

Dear Lord T-800!

Whatever! 

Any questions?

Don’t rest on your 

laurels buddy!

It’s only the beginning!
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