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1\] Introduction ({

O

Machine learning for real-world challenges.

Robotics + simulations = refined algorithms & risk minimization.

Tasks: Obstacle avoidance and navigation.
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Agent: FOSSBot
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RL Algorithms:


https://en.wikipedia.org/wiki/DIKW_pyramid
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\] Related Work (1)

Educational Robotics c(

O

Great potential for tertiary education.

RLUs adaptability + educational robots = innovative teaching methods.

Robots’ domain & roles classification — Mubin et al. 2013 [ 1]

Technical creativity, Applied knowledge, Interest boost — Ospennikova e
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Related Work (2)

Traditional Path Planning methods: BFS, DFS, Dijkstra’s algorithm.

> Need for a model of the world-map (Obstacles’ positions)

RL methods: Through trial-and-error, maximizing cumulative rewards.

» Dynamic-Complex environments, no model needed, only experience — Sutton and Burto 2018
DRL for obstacle avoidance [Kinect RGBD cam] — Tai and Liv 2016

Path planner training [Demonstration learning] — Pfeiffer et al. 2017

UAV navigation using A2C algorithm — Chronis et al. 2023

FOSS RL
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Technologies used
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® Environments:

> OpenAl Gym

> CoppeliaSim

® Algorithms:

> stable-baselines3

® Data Logging:

@ > Weights and Biases
N/

® Data Visualization:

> Python’s matplotlib

‘. Weights & Biases



https://www.gymlibrary.dev/index.html
https://www.coppeliarobotics.com/
https://stable-baselines3.readthedocs.io/en/master/
https://wandb.ai/home
https://matplotlib.org/
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1\] FOSSBot
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Open.source education robot Blolckly o ko —Q
* 3D printed e & &
* Flexible software stack g @ python’ G
* Block-based (Blockly) or Text-based (Coding) programming ;
Software stack (source)
l * Ultrasonic Distance Sensor (0.02 - 4m)

> Distance, not bearing
3 x Infrared Obstacle Sensors (2-30cm)

[}
()


https://www.mdpi.com/2079-9292/11/16/2606
https://en.wikiversity.org/wiki/File:Ultrasonic_Sensor.jpeg
https://medium.com/@kekreaditya/ir-infrared-obstacle-avoidance-sensor-with-arduino-714837ad9ef5

1\@ RL Algorithms

O

DQN — Roderick et al. 2017
Input: Observation space
Q-Value Estimation 9
Action Selection (e-greedy)
Interaction & Reward D
gExperience Storage (replay buffer)g

g Weight Updates
Until Convergence
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PPO — Schulman et al. 2017

Policy Initialization

& Input: Observation space
0 Q
<« %,
Advantage Calculation >
Q
o
g Obijective Clipping p B
Gradient Computation
g Policy Update 9
Epoch Iteration

Until Convergence




Experlmen’rol Setup (1)

Custom environment (OpenAl Gym).

Action space: 3 discrete actions [Move forward, 45-degree left turn, 45-degree right turn]

Observation space: i) Agent’s angle diff from the target A (in degrees), ii) Euclidean distance

d oy 1, 1ii) Total steps (max: 200), iv) 3 IR sensors (implemented) values as a List (size: 3 / 0 or 1)
ddddecEdeEeeEE<E

Reward Function: | reward = —d,,

Map: List of lists — O: open path, 1: obstacles

<€ <
Default rewards: obstacle collision: —10, = & <

max steps: —10, target reached: +1000

Visualization:
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@ Grid Environment — Gym /PyGame
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https://www.gymlibrary.dev/index.html
https://www.pygame.org/docs/

Simulation Environment (1)

\) Experimental Setup (2)

® Custom environment (CoppeliaSim).

® Action space: 3 discrete actions [Move forward, Forward-left, Forward-right]

* Observation space: i) Agent’s angle diff from the target A@, ii) Euclidean distance d .,

iii) Obstacle distance d ¢ (by ultrasonic sensor), iv) 3 IR sensor binary values s;, s, S;-

® Reward Function:

reward = wg, -

larc dtarget
0.5. (1 — dw,.ge) +0.5. <1 e )]
* Default rewards: obstacle collision (—100),
target reached (+1000)

Simulation Environment - CoppeliaSim

CoppeliaSim


https://www.coppeliarobotics.com/
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\\g Experimental Setup (2)

Simulation Environment (2)

Current FOSSBot structure — Difficulties

O

Ultrasonic sensor gives distance, but not bearing.

IR obstacle sensors come to rescue(!)

If they detect something, we get some info about the target’s bearing.

Suggested IR sensors position modification
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Results

Grid

\

Evaluation

Comparison of PPO and DQN Metrics (1000 Episodes)

ining

Tra

DQN vs PPO Training Results

/|
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\\; Trajectories

PPO-
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Results
Simulation

\

Training

O

PPO Training Results
1200

1000

Average Reward
8
3
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DQN Training Results (Buffer size: 4k, 16k, 53k, 1m)
T

DQN 4096
DQN 16384
DQN 53248
DQN 1000000

Average Reward
g
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Evaluation

Comparison of PPO and DQN Metrics (100 Episodes)

GFOSS
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89.52

Finished (%) Avg Reward (x10) Avg Steps (x10)

Metrics

Avg Total Distance (m
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Trajectories
Simulation

1.5 4

1.5 4

dit/*

Informatics & Telematics

HAROKOPIO
UNIVERSITY

EEEEEEEEEEEEEEEEEEEEEEEE




dit/* @ HAROKOPIO ( GFOSS

UNIVERSITY
O

° Solutions
Simulation
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1\] Conclusions ({

PPO & DQN excel in simple grid environments.

PPO outperforms DQN in complex simulations, and learns rapidly and effectively.

FOSSEot is now autonomous in path planning.

Future work:

> Develop path-planning library.
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Finally! | know

Dear Lord T-800!
Whatever!
Any questions?

how to avoid

obstacles!

Don’t rest on your
laurels buddy!
It’s only the beginning!
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