
Development and Evaluation of Reinforcement
Learning models for the FOSSBot Open-Source

educational robot

George Kazazis, Christos Chronis,

Christos Diou, Iraklis Varlamis

Introduction

• Machine learning for real-world challenges.

• Robotics + simulations = refined algorithms & risk minimization.

• Tasks: Obstacle avoidance and navigation.

• Agent: FOSSBot

• RL Algorithms:

➢ Proximal Policy Optimization (PPO)

➢ Deep Q Network (DQN)

DIKW pyramid (source)

https://en.wikipedia.org/wiki/DIKW_pyramid

Related Work (1)
Educational Robotics

• Great potential for tertiary education.

• RL’s adaptability + educational robots = innovative teaching methods.

• Robots’ domain & roles classification – Mubin et al. 2013 [1]

• Technical creativity, Applied knowledge, Interest boost – Ospennikova et al. 2015 [2]

• Open-source education robot – FOSSBot – Chronis and Varlamis 2022 [3]

Related Work (2)
RL, Path Planning and Obstacle Avoidance

• Traditional Path Planning methods: BFS, DFS, Dijkstra’s algorithm.

➢ Need for a model of the world-map (Obstacles’ positions)

• RL methods: Through trial-and-error, maximizing cumulative rewards.

➢ Dynamic-Complex environments, no model needed, only experience – Sutton and Burto 2018 [4]

• DRL for obstacle avoidance [Kinect RGBD cam] – Tai and Liu 2016 [5]

• Path planner training [Demonstration learning] – Pfeiffer et al. 2017 [6]

• UAV navigation using A2C algorithm – Chronis et al. 2023 [7]

Technologies used

• Environments:

➢ OpenAI Gym

➢ CoppeliaSim

• Algorithms:

➢ stable-baselines3

• Data Logging:

➢ Weights and Biases

• Data Visualization:

➢ Python’s matplotlib

https://www.gymlibrary.dev/index.html
https://www.coppeliarobotics.com/
https://stable-baselines3.readthedocs.io/en/master/
https://wandb.ai/home
https://matplotlib.org/

FOSSBot

Software stack (source)

Ultrasonic Distance

Sensor (source)

Infrared Obstacle

Sensor (source)

• Open-source education robot

• 3D printed

• Flexible software stack

• Block-based (Blockly) or Text-based (Coding) programming

• Ultrasonic Distance Sensor (0.02 - 4m)

➢ Distance, not bearing

• 3 x Infrared Obstacle Sensors (2-30cm)

➢ 1: obstacle - 0: clear

• Inertial Measurement Unit (IMU)

➢ Robot’s orientation & position

https://www.mdpi.com/2079-9292/11/16/2606
https://en.wikiversity.org/wiki/File:Ultrasonic_Sensor.jpeg
https://medium.com/@kekreaditya/ir-infrared-obstacle-avoidance-sensor-with-arduino-714837ad9ef5

RL Algorithms
Preliminaries

Input: Observation space

Q-Value Estimation

Action Selection (ε-greedy)

Interaction & Reward

Experience Storage (replay buffer)

Weight Updates

Until Convergence

Policy Initialization

Input: Observation space

Advantage Calculation

Objective Clipping

Gradient Computation

Policy Update

Epoch Iteration

Until Convergence

DQN – Roderick et al. 2017 [8] PPO – Schulman et al. 2017 [9]

Experimental Setup (1)
Grid Environment

• Custom environment (OpenAI Gym).

• Action space: 3 discrete actions [Move forward, 45-degree left turn, 45-degree right turn]

• Observation space: i) Agent’s angle diff from the target Δ𝜃 (in degrees), ii) Euclidean distance

𝑑𝑒𝑢𝑐𝑙, iii) Total steps (max: 200), iv) 3 IR sensors (implemented) values as a List (size: 3 / 0 or 1)

• Reward Function:

• Map: List of lists – 0: open path, 1: obstacles

• Default rewards: obstacle collision: −10,

 max steps: −10, target reached: +1000

• Visualization: PyGame

𝒓𝒆𝒘𝒂𝒓𝒅 = −𝒅𝒆𝒖𝒄𝒍

Grid Environment – Gym/PyGame

https://www.gymlibrary.dev/index.html
https://www.pygame.org/docs/

Experimental Setup (2)
Simulation Environment (1)

• Custom environment (CoppeliaSim).

• Action space: 3 discrete actions [Move forward, Forward-left, Forward-right]

• Observation space: i) Agent’s angle diff from the target Δ𝜃, ii) Euclidean distance 𝑑𝑒𝑢𝑐𝑙,

iii) Obstacle distance 𝑑𝑜𝑏𝑠 (by ultrasonic sensor), iv) 3 IR sensor binary values 𝑠𝑙 , 𝑠𝑐 , 𝑠𝑟

• Reward Function:

• Default rewards: obstacle collision (−100),

 target reached (+1000)

𝒓𝒆𝒘𝒂𝒓𝒅 = 𝒘𝒐𝒃𝒔 ∙ 𝟎. 𝟓 ∙ 𝟏 −
𝒍𝒂𝒓𝒄

𝟏𝟖𝟎 ∙ 𝒅𝒕𝒂𝒓𝒈𝒆𝒕
+ 𝟎. 𝟓 ∙ 𝟏 −

𝒅𝒕𝒂𝒓𝒈𝒆𝒕

𝒅𝒎𝒂𝒙

Simulation Environment - CoppeliaSim

https://www.coppeliarobotics.com/

Experimental Setup (2)
Simulation Environment (2)

• Current FOSSBot structure – Difficulties

• Ultrasonic sensor gives distance, but not bearing.

• IR obstacle sensors come to rescue(!)

• If they detect something, we get some info about the target’s bearing.

Suggested IR sensors position modification

Results
Grid

Training Evaluation

Evaluation Cycle: 10 evaluation episodes Final Evaluation: 1,000 evaluation episodes

Trajectories
Grid

PPO-

DQN-

Solutions
Grid

15x15 - DQN

30x30 - PPO

Results
Simulation

Training
Evaluation

Evaluation Cycle: 10 evaluation episodes

Final Evaluation: 100 evaluation episodes

-PPO

DQN-

Trajectories
Simulation

PPO-

Solutions
Simulation

Conclusions

• PPO & DQN excel in simple grid environments.

• PPO outperforms DQN in complex simulations, and learns rapidly and effectively.

• FOSSBot is now autonomous in path planning.

• Future work:

➢ Develop path-planning library.

➢ Apply successful strategies to real FOSSBot.

➢ Optimize RL algorithms.

Acknowledgments

• The authors would like to thank the Greek Open Technologies Alliance

 for supporting and funding this article.

• FOSSBot evolution through the GSoC contest

• Buying & Assembling the first 100 robots + sending them to Greek schools

• FOSSBot in academic assignments Python programming in practice

References

1. Omar Mubin, Catherine Stevens, Suleman Shahid, Abdullah Mahmud, and Jian-Jie Dong. 2013. A review of the applicability of robots in education.

Technology for Education and Learning 1 (06 2013).

2. Elena Ospennikova, Michael Ershov, and Ivan Iljin. 2015. Educational Robotics as an Inovative Educational Technology. Procedia - Social and Behavioral

Sciences 214 (12 2015), 18–26.

3. Christos Chronis and Iraklis Varlamis. 2022. FOSSBot: An Open Source and Open Design Educational Robot. Electronics 11, 16 (2022), 2606.

4. Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction. MIT press.

5. Lei Tai and Ming Liu. 2016. Towards cognitive exploration through deep reinforcement learning for mobile robots. arXiv preprint arXiv:1610.01733 (2016).

6. Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland Siegwart, and Cesar Cadena. 2017. From perception to decision: A data-driven approach to end-to-

end motion planning for autonomous ground robots. In 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE.

7. Christos Chronis, Georgios Anagnostopoulos, Elena Politi, Antonios Garyfallou, Iraklis Varlamis, and George Dimitrakopoulos. 2023. Path planning of

autonomous UAVs using reinforcement learning. In Journal of Physics: Conference Series, Vol. 2526. IOP Publishing, 012088.

8. Melrose Roderick, James MacGlashan, and Stefanie Tellex. 2017. Implementing the Deep Q-Network. arXiv:1711.07478 [cs.LG]

9. John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG]

Thank you!
Finally! I know

how to avoid

obstacles!

Dear Lord T-800!

Whatever!

Any questions?

Don’t rest on your

laurels buddy!

It’s only the beginning!

	Slide 1: Development and Evaluation of Reinforcement Learning models for the FOSSBot Open-Source educational robot
	Slide 2: Introduction
	Slide 3: Related Work (1) Educational Robotics
	Slide 4: Related Work (2) RL, Path Planning and Obstacle Avoidance
	Slide 5: Technologies used
	Slide 6: FOSSBot
	Slide 7: RL Algorithms Preliminaries
	Slide 8: Experimental Setup (1) Grid Environment
	Slide 9: Experimental Setup (2) Simulation Environment (1)
	Slide 10: Experimental Setup (2) Simulation Environment (2)
	Slide 12: Results Grid
	Slide 13: Trajectories Grid
	Slide 14: Solutions Grid
	Slide 15: Results Simulation
	Slide 16: Trajectories Simulation
	Slide 17: Solutions Simulation
	Slide 18: Conclusions
	Slide 19: Acknowledgments
	Slide 20: References
	Slide 21: Thank you!

